
Sahu & Nayak International Journal on Emerging Technologies 11(3): 383-394(2020) 383

International Journal on Emerging Technologies 11(3): 383-394(2020)

ISSN No. (Print): 0975-8364

ISSN No. (Online): 2249-3255

Increasing Efficiency of Process Discovery Algorithms and Process model
Discovery from Unlabeled Event Logs: A Review

Muktikanta Sahu
1
 and Gopal Krishna Nayak

2

1
Research Scholar, Department of Computer Science, IIIT Bhubaneswar (Odisha), India.

2
Professor, Department of Computer Science, IIIT Bhubaneswar (Odisha), India.

(Corresponding author: Muktikanta Sahu)
(Received 18 February 2020, Revised 15 April 2020, Accepted 17 April 2020)

(Published by Research Trend, Website: www.researchtrend.net)

ABSTRACT: Business processes leave behind trails of their execution histories and present-day information
systems record these trails in event logs. Process mining helps analysts to have a better insight into these
processes by exploiting these event logs. Out of several process mining operations, process discovery is
the prominent and most widely researched topic. A process discovery method produces a business process
model by correlating events available in an event log. Numerous process discovery techniques have been
presented in recent years focusing on issues like the complexity of the generated model, accuracy, and
scalability. However, most of these methods incorporate algorithms that are computationally complex and
rely on case identifiers to establish the correlation between the events available in an event log to produce a
process model. Hence, it becomes important to explore the availability of methods that (i) increase the
execution efficiency of the computationally complex process discovery algorithms and (ii) discover process
model in the absence of case identifiers. This article not only presents a meticulous review of the methods
available for the above-said problems but also highlights the gaps and unexplored facets. There are other
review articles available in the domain of process mining, but they do not explicitly focus on the above-said
problem statements.

Keywords: Efficiency, Event log, Process discovery, Process mining, Scalability, Review.

Abbreviations: BPMN, Business Process Model Network; caseid, case identifier; FHM, Flexible Heuristic Miner; IT,
Information Technology; ILP, Integer Linear Programming; IoT, Internet of Things.

I. INTRODUCTION

Modern business processes are event-driven and they
rely on information systems to carry out these events.
The execution trails of these processes are maintained
by information systems in event logs [62]. Process
mining techniques not only enable analysts to get a
better view of a process but also help the analysts to do
an in-depth performance analysis of a business process
by using event logs. Thus, event logs play an important
role in process mining to derive significant inferences.
An event log is a collection of traces of process
instances and each trace is an ordered sequence of
events related to a particular case.
The rudimentary step involved in process mining is
process discovery from event logs and representing the
discovered process in a graphical form. A process
discovery approach uses an event log as input to
produce a process model that represents the control
flow relations existing between events (or activities) in
the same event log. The effectiveness of such a
discovered process model is measured through the
accuracy of reflecting the behavior captured in the event
log. The discovered process model must not be
complex. Also, it should have high fitness,
generalization, and precision value [61].
The challenge of discovering process models from
event logs is not new. Many researchers have proposed
their unique approaches to tackle this challenge or
factors affecting this challenge in the past twenty years.

While a healthy number of proposals are available to
deal with the challenge of process discovery, most of
them rely on event logs having case identifiers (caseid).
It becomes pretty easier to correlate events (or
activities) belonging to a process trace in the presence
of caseids. But, in the absence of caseid's the challenge
of process discovery becomes hard to crack. Also, most
of the state-of-the-art process discovery techniques are
complex and include computation-intensive steps. As
modern-day business organizations produce a
voluminous amount of data, the event log size increases
exponentially. This results in longer execution times of
the state-of-the-art process discovery techniques. Thus,
it becomes important to explore and review the
techniques available for (i) discovering process models
that do not rely on caseid's and (ii) increasing the run-
time efficiency of process discovery algorithms. This
paper aims at presenting a meticulous depiction of the
above-said facts.
The remaining portions of the paper are organized as
follows. Section II presents the formulation of the
searching mechanism for the review process. Section III
describes the methods available for process discovery
in the presence of caseids and the absence of caseids
respectively. Then, the methods which either increase
scalability or run-time efficiency of process discovery
algorithms are described in Section IV. Section V
presents the discussionon the overall findings followed
by Section VI which concludes the paper and sketches
future work directions.

e
t

Sahu & Nayak International Journal on Emerging Technologies 11(3): 383-394(2020) 384

II. FORMULATING THE SEARCH MECHANISM

To gather the information regarding research done in
the field of process discovery, we listed out a set of
search strings based on a set of research questions.
These search strings were executed on different
sources of data. Further, we enforced some criteria for
selecting the studies retrieved through the search to be
included in the review process.

A. Research Questions
Since the progress made in the field of process mining
is now two decades old and many methods are
available for process discovery, the objective of this
literature review is to accumulate all the methods
available for process discovery, segregate and analyze
the methods that can discover process model from an
unlabeled event log, and list out any such framework
that can increase the execution efficiency of process
discovery methods. Specifically, our search criteria for
the literature review is based on the following three
research questions:
[Q1] What are the methods available for process
discovery?
[Q2] How to discover process models in case of
unlabeled event logs and is there any method available
for the same?
[Q3] How to enhance the execution performance of the
process discovery methods?

B. Forming the search strings and selection of studies to
be included
The core of our search revolves around Q1 (which also
includes the proposals targeting Q2) mentioned in the
previous section, which aims at tracing out present
methods available for process discovery. To achieve
this, we considered the following search strings:
“process discovery”, “process discovery in process
mining”, “process discovery and process mining”,
“discovering process models”, “workflow modeling”,
“workflow discovery”, and “discovering process models”.
We used Google Scholar for searching documents
having either of these search strings. Specifically, we
retrieved those documents which contained either of
these search strings in their title or abstract or
keywords. Further, we considered only those
documents which purely proposed a new method to
discover process model and discarded all the other
documents which have proposals on noise reduction or
conformance checking in process mining [64]. The
studies which target Q3 mentioned in Subsection A are
also filtered out from the above-mentioned search
results. The entire process of searching was over by
December 2019.

III. PROCESS DISCOVERY METHODS

Given an event log, discovering a process model from
that event log is the primary task in process mining.
Process discovery methods are based on machine
learning and data mining techniques. The description of
several process discovery algorithms along with their
respective notations is presented in the following
section.

A. Process discovery in the presence of caseid
An important attribute that helps in correlating different
events or activities belonging to a particular process
instance in an event log is caseid. Within an event log,
several caseids might be present, but these must be
unique to correlate the events or activities that are
executed within a process instance. The majority of the
process discovery techniques rely on caseid or an
attribute that is very similar to a caseid in an event log to
discover process models. We have retrieved and
summarized all such techniques or methods that rely on
caseid for process discovery below.
Agrawal et al., proposed a method to discover process
models from unstructured execution of processes. They
applied this technique to workflow management
systems. The application of this technique on synthetic
data displayed successful evaluation and evolution of
existing processes [2].
Cook and Wolf developed a data analysis technique and
named it to process discovery where they were able to
discover models from event-based data. Specifically,
they developed RNet, Ktail, and Markov methods to
discover models in the context of software engineering.
They used statistical, algorithmic, and probabilistic
approaches to develop these methods [13].
Datta proposed the B-F (k,c) algorithm to automatically
extract AS-IS process models in the domain of Business
Process Reengineering (BPR) and Workflow
Management. This algorithmic approach was based on
statistics and probability theory [14].
A technique to learn two-component mixture models of
global partial orders was proposed by Manilla and Meek
[44]. The technique was able to provide an
understandable, global view of a set of event
sequences. But, the technique lacked many other
typical problems like concurrency in the field of process
mining. The data mining techniques utilized and
proposed a tool named as Process Miner. Process
Miner was able to discover exact workflow models from
event-based data. But, Process Miner was not robust
enough to be applied in a real-life setting [56, 57].
Van Der Aalst et al., [62] proposed an algorithm to
discover a process model from a workflow log. They
named it α algorithm. The α algorithm was able to mine
any workflow represented by a so-called structured
workflow net. However, this algorithm was incapable of
discovering any arbitrary workflow process as they
might have loops. An enhancement over the existing α
algorithm was proposed by de Medeiros et al., [3] which
was able to overcome the problem of short loops. The
authors proposed the α

+
-algorithm which was able to

correctly mine sound structured workflow nets and
handle short loops of length one and two. The α

+
-

algorithm was implemented in the EMiT tool. Herbst &
Karagiannis described the splitpar algorithm, which is
part of the InWoLvE framework for process analysis.
This algorithm was based on deriving a so-called
stochastic activity graph and converting it into
astructured process model. The splitpar algorithm was
at par with detecting duplicate activities, but it was
incapable of discovering non-local dependencies [32].

Sahu & Nayak International Journal on Emerging Technologies 11(3): 383-394(2020) 385

vanDongen and van der Aalst presented a process
discovery method by aggregating process models
obtained from individual procinstances into a Petri net.
The intermediate steps in this method were derived by
using Event-driven Process Chains (EPCs) [67].
Another process discovery alg ess orithm named
Workflow Miner was proposed by Gaaloul et al., The
elementary dependencies in an event log were modeled
through intermediary graphical representations and then
the final advanced structural workflow patterns were
modeled in this technique [24].
Weijter et al., proposed a heuristic-based algorithm to
discover a process model from an event log in the
process mining domain [77]. The algorithm was named
as "HeuristicsMiner" and was able to deal with noise.
HeuristicsMiner can express the main behavior
recorded in an event log. However, it was unable to
represent exceptions present in an event log.
Greco et al., proposed a machine learning theory-based
approach in [29] and called this technique as DWS
mining. Based on a hierarchical and iterative procedure,
DWS mining was able to refine the process model in
each step as the process model was generated by
applying a clustering technique on patterns having
similar behavior. This approach not only guaranteed full
compliance with the event log but also displayed
incremental improvement on the soundness property of
the process model.
An induction rule-based approach to predict the causal
dependency between activities from a set of event logs
having different levels of noise and imbalance was
proposed by Mặruşter et al., [45]. Specifically, a
propositional rule induction technique was used to
deduce the relations in a preprocessing step.
A combined approach of ILP learning and partial-order
planning was proposed by Ferreira and Ferreira to
discover process models. By repetitive combined
execution of planning and learning, a process model
was discovered. The model was represented based on
the case data preconditions and effects of its activities
[22].
A genetic algorithm-based method was proposed to
extract the process model from an event log [15]. The
method was successful in dealing the problems like
non-trivial constructs and/or noise present in the log.
Rather than relying on local information, this genetic
algorithm approach used global search techniques to
handle these problems. Experiments were carried out
using synthetic and real-life logs to show that the fitness
measure is complete and precise. The genetic algorithm
was embedded in the ProM framework as a plug-in.
Petri net-based discovery methods show their limited
capabilities in learning accurate and comprehensible
models while dealing with real-world event logs which
are highly complex. To overcome such a problem,
alternative discovery technique such as the FuzzyMiner
was proposed [30]. This technique was more effective
as this technique featured better abstraction capabilities.
Wen et al., developed methods to mine non-free-choice
constructs as most of the real-life processes display the
said behavior. Using Petri-net-based representation,
they were able to show two types of causal
dependencies between tasks namely implicit and
explicit. An algorithm that can deal with these

dependencies and also, implemented that algorithm in
the ProM Framework. An improvement over the original
α algorithm was proposed where they take advantage of
both starts and completed event types to detect
concurrency. They named their algorithm as the β-
algorithm [78].
Lamma et al., described the use of ILP to process
mining. The search algorithm was guided by the
presence of negative sequences in this method. The
use of partial-order planning was avoided in this method
whilepresentinga userwith an execution plan to accept
or reject. Hence, the root of the negative events was not
answered immediately in this approach [35].
Greco et al., proposed AWS mining, an enhancement
over the preexistingprocess discovery techniques by
imposing an abstraction-based method that targeted
classification of process models [27]. The method was
capable of analyzing different behavior present in an
event log in details. A mining algorithmwas combined
withan abstraction-based algorithmin this technique to
produce a tree-like schema finally. The non-leaf nodes
in this tree-like structure represented an abstract
process model that further generalized to represent all
the different process models in the respective subtree.
Goedertier et al., proposed AGNEsMiner which
addressed the task of process discovery with the help of
first-order classification learning. The event logs were
infused with artificially generated negative events
(AGNEs). The final output of AGNEsMiner was a Petri
net modelrepresenting a process. It was possible to
distinguish between the occurrence of either a positive
or a negative event from an event log that has been
infused with artificially generated negative events
through this method. The entire process mining task
was based on a classification learning problem. The
algorithm was designed in such a way that it can learn
the distinguishing conditions that deduce whether an
event can happen or not, given an execution history of
events of other activities [25].
An enhanced version of the WFMiner was proposed.
This enhanced algorithmic technique was capable of
dealing with many important process discovery
challenges like noise, duplicate tasks, and non-free
choice [23].
A method based on Integer Linear Programming (ILP) to
discover process models from an event log was
proposed. This ILP based method was formerly known
as the Parikh language-based region miner which has
been derived by using the concepts from the language-
based theory of regions an area that belongs to the Petri
net domain. The authors claimed that this technique to
be useful as this approach allowed for parallelization
and was independent of the number of events
registered in the event log [65].
To have a balanced trade-off between precise and
general process model, a new process discovery
technique called FSMMiner/Petrify was proposed. The
idea was to represent mined process models through
different views at different levels of abstraction. It was a
two-step approach where in the first step, a transition
system should be constructed from the traces in an
event log. The second step involved synthesizing this
transition system employing the theory of regions and
finally, a Petri net was constructed [52, 63].

Sahu & Nayak International Journal on Emerging Technologies 11(3): 383-394(2020) 386

Carmona et al., described Genet. This technique was
very similar to FSMMiner/Petrify and was able to
produce a Petri net from a transition system [11].
To represent the semantics of splits and joins in an
event log, a new representation language, and the
respective algorithm has been proposed in [76]. The
method is based on asplit/join frequency table and
named Flexible Heuristic Miner. The proposed algorithm
was implemented as a plug-in in the ProM framework
and was able to produce easy to understand process
models in the case of non-trivial constructs, low
structured domains, and the presence of noise.
The very first basic approach to mine declarative
process models was proposed [41]. The authors used
Declare constraints [49, 80] to extract these models.
An algorithm to extract block-structured Petri nets from
event logs was proposed [33]. In a two-step approach,
the algorithm first develops an adjacency matrix
between all pairs of tasks and then extracts block-
structured models consisting of primary sequence,
parallel, choice, optional, loop, and self-loop structures
by analyzing the available information. The method was
developed as a standalone tool and named as HK.
The process discovery method that returns causal nets
was proposed by Greco et al., [28, 26]. A causal net is
built by capturing the causal relations between activities
in an event log. The causal relations are gathered from
an event log and encoded in this method. The required
background knowledge is captured in terms of
precedence constraints of the resulting model topology
and then the algorithm is formulated based on
reasoning problems over these precedence constraints.
A two-phase approach to discover Declare constraints
and named it MINERful [18]. In the first phase of this
approach, the occurrences of activities and their
interplay in the event log were computed. The second
phase dealt with checking the validity of Declare
constraints by querying the knowledge base created
with the previous statistical data structure.
The Inductive Miner was proposed which was based on
the extraction of process trees from an event log [37].
The proposed technique ensured soundness while
dealing with infrequent behavior and large event logs
during process discovery. The technique has been
implemented in ProM. An extension of this work where
modeling of cancellation behavior is supported has been
published [36].
To discover Declare constraints along with semantics
that considers data conditions was first presented [40].
The authors used first-order temporal logic to derive the
data-aware semantics of Declare.
The Proximity Miner presented is another method that
produces causal nets. In this method, the behavioral
relations between the events in an event log are first
extracted and then these are enhanced by using inputs
from domain experts [82, 81].
A runtime monitoring framework to do log analysis was
developed [1]. The framework was capable of extracting
process instances and trace out appropriate metrics
simultaneously in a single pass through the event logs.
Further, these metrics were used to select traces with
certain characteristics to be used for the discovery of
process models. The authors took the help of directly-
follows graphs to express process models.

Another approach for the discovery of Declare
constraints has been presented. Also present the
Evolutionary Declare Miner that implements
thediscovery task using a genetic algorithm [72].
The Evolutionary Tree Miner was introduced. This was a
genetic algorithm-based method that enables the user
to discover process based on four quality preferences
namely: fitness, precision, generalization, and
complexity [8, 9].
To discover Petri nets from large event logs, numerical
abstract domains were used [10]. The formal properties
of the discovered models were guaranteed in this
approach. Also, the method ensured that the discovered
Petri nets can reproduce every trace in the log which
minimally describes the log behavior.
Ferilli proposed the WoMan framework [20] which
included learning and refining process models from an
event log by discovering first-order logic constraints.
The method ensured incremental learning and adapting
the models along with the ability to showcase triggers
and conditions on the process tasks and efficiency.
Maggi et al., presented the Hybrid Miner [42] which can
produce a hybrid process model from an event log. A
hybrid process model was a hierarchical model
consisting of several nodes and each node represents a
sub-process. Further, each sub-process was specified
in a declarative or procedural way. To represent
procedural sub-processes Petri nets were used,
whereas to represent declarative sub-processes
Declare were used.
A divide-and-conquer algorithm-based process
discovery method known as the Constructs Competition
Miner (CCM) was proposed [51]. The method was able
to discover block-structured processes from event logs
which might be having exceptional behavior.
To extract directed acyclic graphs from event logs
based on probabilistic models was proposed [73]. The
method extensively used the Bayesian belief network
which is one of the most common probabilistic models.
The authors of the work proposed an approach for the
discovery of hybrid models named as Fusion Miner.
Fusion Minor was based on the semantics devoted to
obtaining a fully mixed language, where procedural and
declarative constructs can be connected [16].
DGEM proposed was a method to discover BPMN
models. In the first step of this two-step approach, a
hierarchical view on process models was formally
specified. In the second step, an evolution strategy was
applied to it. The evolution strategy was driven by the
diversity of the process model population. The method
was very effective in finding the process models that
best represent a given event log [47].
Non-free-choice construct and invisible tasks are two
critical structures that need to be dealt with in a process
model. The challenge of mining invisible tasks involved
in non-free-choice constructs was proposed in an
algorithm named α

$
[31]. The problem was solved in α

$

by introducing new ordering relations. The α
$
 was able

to significantly improve the existing process mining
techniques and was implemented as a plug-in of ProM.
Liesaputra et al., proposed the Maximal Pattern Mining
(MPM) technique to discover process models from
event logs. The method was based on capturing
patterns of event sequences in an event log and from

Sahu & Nayak International Journal on Emerging Technologies 11(3): 383-394(2020) 387

these patterns a process model was generated which
were represented through causal nets. This MPM
technique was able to handle loops (of any length),
duplicate tasks, non-free choice constructs, and long-
distance dependencies.
Vazquez et al., proposed ProDiGen [74] where they
addressed the problem of process discovery through a
genetic algorithm. The method used a new fitness
function that considered completeness, precision and
simplicity, and specific crossover and mutation
operators. The discovered models were represented
through causal nets.
Declarative process models consider activities of a
business process to be atomic/instantaneous events.
But, this is not always true as in realistic environments,
process activities may not be instantaneous but would
have executed over a time interval and passed through
a sequence of states of a lifecycle. The method
proposed described a discriminative rule mining
approach to enable the existing declarative process
discovery techniques to analyze business processes
having non-atomic activities [6].
 The theory of grammatical inference was used to
generate Petri nets for process discovery. This was a
standalone application and named as RegPFA [7].
Conforti et al., proposed the BPMN Miner [12]. This was
an automated discovery method that produced BPMN
models. The generated models contained sub-
processes, activity markers like multi-instance and loops
along with interrupting and non-interrupting boundary
events that could handle exception handling.
The authors in their work proposed the CSM Miner. The
CSM Miner was able to discover state machines from
event logs. This method focused onthe states of the
different process perspectives and discovered the
relations among them instead of concentrating on the
events or activities that were executed in a particular
process. These relations were expressed as Composite
State Machines. The CSM Miner was also able to
provide an interactive visualization of these multi-
perspective state-based models [68].
Li et al., proposed a process mining algorithm named as

τ. This method leveraged data carried by tokens during

the execution of a business process and tracked the
state changes in the so-called token logs. This
information used to improve the mining efficiency and
mining capability of standard process discovery
algorithms [38].
The algorithms to extract the control flow, as well as
relevant data parameters from a given event log, has
been presented [46]. The authors also showed that how
conditional partial order graphs can be used to visualize
the obtained results from an event log. The method was
called as PGminer and implemented as a Workcraft
plug-in as a standalone application.
A mining approach that takes the help of standard SQL
for querying the log to directly work on relational event
data was introduced [58]. The mining procedure
became fast as the detection of certain control-flow
constraints was removed and database performance
technology was incorporated. Also, customization of
queries was possible and process perspectives were
covered beyond control flow.

The method presented emphasized that activities
without any dependencies in an event log can be
executed in parallel. Hence, this method was able to
discover process models with concurrency without
caring about the completeness criteria of the logs. A tool
named ProM-D was developed with this method [59].
To discover sound workflow nets from incomplete event
logs is a challenging task. An approach to tackle this
challenge was introduced [60]. The activities which infer
the behaviors not exhibited in the log were identified
through the concept of invariant occurrence. The set of
such activities was named conjoint occurrence classes
and the proposed method was based on this concept.
Augusto et al., proposed a discovery method that
combined the following two: (i) a technique to filter the
directly-follows graph induced by an event log, (ii) with
an approach to identify combinations of split gateways
that accurately capture the concurrency, conflict and
causal relations between neighbors in the directly-
follows graph. The proposed method was able to
produce simple process models with low branching
complexity. Also, the produced models were having
consistently high and balanced fitness, precision, and
generalization [4].
vandenBroucke & De Weerdt presented Fodina, a
heuristic-based process discovery technique with a
strong focus on robustness and flexibility. The authors
were able to identify several drawbacks that impact the
reliability of previously existing heuristic-based process
discovery techniques. The proposed algorithm has
better performance in terms of process model quality,
adds the ability to mine duplicate tasks, and allows for
flexible configuration options [71].
A method to discover causal nets that optimizes the
scalability and interpretability of the outputs was
proposed [48]. The process that needs to be analyzed
was decomposed into set independent stages so that
each stage can be mined separately. With the above
implementation, the technique was able to maximize
modularity by discovering a stage decomposition.
Verbeek et al., proposed a generic divide-and-conquer
approach to discover process models from very large
event logs [75]. The approach was based on partitioning
the event log into several smaller logs and discovering a
model from each of those smaller logs. Then all the
models discovered from those sublogs were assembled
to form the final model. This method was able to reduce
overall complexity and produce high-quality models.
Often process discovery methods filter out infrequent
paths and activities from an event log by treating them
as noise. However, sometimes, removing this infrequent
behavior may lead to a loss of significant insights into
the process. Hence, not all infrequent behavior should
be considered as noise. Mannhardt et al., proposed a
Data-aware Heuristic Miner (DHM) [43]. This process
discovery method was able to distinguish between
infrequent paths and random noise by using
classification techniques based on data attributes. Both
data- and control-flow of the process were discovered
by using this technique. The applicability of the DHM
was evaluated on several real-life event logs.

Sahu & Nayak International Journal on Emerging Technologies 11(3): 383-394(2020) 388

Table 1: Overview of different process discovery techniques in the presence of caseid.

S. No. Method Contributor(s) Year

1. General DAG Agrawal et al., [2] 1998
2. B-F(k,c)-algorithm Datta [14] 1998

3. Rnet, Ktail, Markov Cook and Wolf [13] 1998
4. Global partial orders Manilla and Meek [44] 2000

5. Process Miner Schimm [56] 2002
6. α / α

+
 van der Aalst et al., [62], [3] 2004

7. InWoLvE—splitpar Herbst and Karagiannis [32] 2004

8. Multi-phase Miner van Dongen and van der Aalst [67] 2005
9. Workflow Miner Gaaloul et al., [24] 2005

10. HeuristicsMiner Weijters et al., [77] 2006
11. DWS Mining Greco et al. [29] 2006
12. Rule-based approach Mặruşter et al. [45] 2006

13. ILP-partial order Ferreira and Ferreira [22] 2006
14. Genetic Miner Alves de Medeiros et al. [15] 2007

15. Fuzzy Miner Günther and van der Aalst [30] 2007
16. α

++
 Wen et al., [78] 2007

17. DecMiner Lamma et al., [35] 2007

18. AWS Mining Greco et al., [27] 2008
19. AGNEsMiner Goedertier et al., [25] 2009

20. β (or Tshinguaα) Wen et al., [79] 2009
21. Enhanced WFMiner Folino et al., [23] 2009

22. ILP Miner(Parikh) Werf et al., [65] 2009
23. FSM Miner/Petrify van der Aalst et al.,[63] 2010
24. FSM Miner/Genet Carmona et al., [11] 2010

25. Aim Carmona, Cortadella [10] 2010
26. Flexible Heuristic Miner Weijters et al., [76] 2011

27. Declare Miner Maggi et al., [41] 2011
28. HK Huang and Kumar [33] 2012
29. CNMining Greco et al., [28] 2012

30. MINERful Di Ciccio and Mecella [18] 2013
31. Inductive Miner - Infrequent Leemans et al., [37] 2013

32. Data-aware Declare Miner Maggi et al., [40] 2013
33. Proximity Miner Yahya et al., [81] 2013

34. WoMan Ferilli [20] 2013
35. Process Skeletonization Abe and Kudo [1] 2014
36. Evolutionary Declare Miner vandenBroucke et al. [72] 2014

37. Evolutionary Tree Miner Buijs et al., [8, 9] 2014
38. Hybrid Miner Maggi et al., [42] 2014

39. Competition Miner Redlich et al., [51] 2014
40. Directed Acyclic Graphs Vasilecas et al., [73] 2014
41. Fusion Miner De Smedt et al., [16] 2015

42. DGEM Molka et al., [47] 2015
43. ProDiGen Vazquez et al.,[74] 2015

44. ProM-D Song et al., [59] 2015
45. α

$
 Guo et al., [31] 2016

46. Maximal Pattern Mining Liesaputra et al., [39] 2016

47. Non-Atomic Declare Miner Bernardi et al., [6] 2016
48. RegPFA Breuker et al., [7] 2016

49. BPMN Miner Conforti et al., [12] 2016
50. CSMMiner van Eck et al., [69] 2016

51. τ miner Li et al., [38] 2016

52. PGminer Mokhov et al., [46] 2016
53. SQLMiner Schönig et al., [58] 2016
54. CoMiner Tapia-Flores et al., [60] 2016

55. Split miner Augusto et al., [4] 2017
56. Fodina vandenBroucke et al., [71] 2017

57. Stage miner Nguyen et al., [48] 2017
58. Decomposed Process Miner Verbeek, van der Aalst [75] 2017
59. Data-aware Heuristic Miner Mannhardt et al., [43] 2017

60. Discover and Structure Augusto et al., [5] 2018
61. HybridILPMiner van Zelst et al., [70] 2018

Sahu & Nayak International Journal on Emerging Technologies 11(3): 383-394(2020) 389

Augusto et al., proposed a method of generating a
structured (and sound) process model from an event
log. They adopted a two-step approach. They first used
a well-known heuristic that could discover an accurate
but unstructured model. In the second step, they
transformed that unstructured model into a structured
sound model. This discover-and-structure approach was
proven to outperform other existing methods
considering complexity and accuracy measures [5].
An improvement over the ILP miner presented, which
was based on hybrid variable-based regions. The
number of variables used to solve an ILP based
problem can be varied through hybrid variable-based
regions. It is important to note thatdifferent numbers of
variables have a different impact on average
computation time for solving an ILP problem [64, 70].
Santhoshkumar et al., presented a process model
based analytics for improving service quality in the
healthcare domain by unitizing the combined benefits of
Big-data and IoT [55].
Referring to our first research question (Q1): “What are
the methods available for process discovery?” we have
summarized all the sixty-one studies available to date
on process discovery using caseid in Table 1. Each
entry in Table 1 represents the method that was
proposed, followed by the contributors of that work, and
the year of publication.
The algorithms listed in Table 1 are capable of
producing different types of models like Procedural,
Declarative, and Hybrid. Similarly, the adaptation of
modeling languages also varies across different
discovery techniques. Some of the popular modeling
languages are: Petri nets, Declare, Process trees,
WoMan, BPMN, Causal nets, State machines, Directed
acyclic graphs, and Partial order graphs. We have not
explicitly mentioned the type of models being produced
and modeling languages used by different discovery
algorithms, as our primary focus was on Q2 and Q3
mentioned in Section II. Also, due to this reason only,
we have not focused on parameters like accuracy,
precision, fitness, generalization, F-score, and noise,

which are being used to determine the effectiveness of
a process discovery algorithm. Readers are advised to
go through [17, 5] to have a better knowledge of these
issues. While [5] presents a detailed review and
analysis of the different process discovery techniques
published in 2012 onward, a review of the works done
before 2012 in the field of process discovery is
presented in [17].

B. Process discovery in the absence of caseid
In many unstructured business processes such as
service-oriented processes, it may not be possible to
capture or record caseids for process instances. Hence,
the event logs are generated without caseids and
termed as unlabeled event logs. In the absence of
caseids, it becomes challenging to correlate different
events or activities that belong to the same process
instance and therefore, the task of process discovery
becomes difficult. In the literature of process discovery,
only two methods are available that deal with process
discovery in the absence of caseids. We have listed out
these two methods.
The problem of discovering process models in the
absence of a case identifier was first proposed [21].
The authors presented a probabilistic approach to
estimate a process model utilizing an iterative
Expectation–Maximization procedure. The same
procedure has also been used to find the caseid's in
unlabeled event logs. The method was able to discover
process models with loops.
Pourmirza et al., proposed a method to address the
correlation challenge which arises due to the
unavailability of caseid's in an event log, and hence,
process discovery becomes a challenging task. The
method was solved using Integer Linear Programming
(ILP) based on precede/succeed matrix and duration
matrix calculated from timestamps of event occurrence
within an event log. The method was also able to
generate the caseid attribute for the unlabeled event
log, but it was limited to discover process models
without loops.

Table 2: Overview of different process discovery techniques in the absence of caseid.

S. No. Method Contributor(s) Year

Able to
discover

splits-
joins

Able to
discover

loops

Able to
discover
caseid

Tested on
synthetic

logs

Tested
on real-
world
logs

1 EM-approach
Ferreira and

Gilblad
2009 Yes Yes Yes Yes Yes

2 CorrelationMiner Pourmirza et al., 2017 Yes No Yes Yes Yes

The details of the above mentioned two proposals are
listed in Table 2. Out of the two methods mentioned in
Table 2, the algorithm presented [21] was able to
produce a model with precision 61% and recall 41%,
which are 24% and 22% lower than the results of the
algorithm presented [50] respectively when tested over
a real-world event log from the BPI Challenge of 2012
[66]. But, the method proposed [21] can process models
having cycles or loops unlike the method proposed [50].
Both the methods were able to detect splits-and-joins,
which captures the parallelization and branching

available in a process model. Also, these methods were
able to detect caseids for respective process instances.

IV. METHODS AVAILABLE FOR INCREASING
EFFICIENCY OF PROCESS DISCOVERY
ALGORITHMS

Modern-day information technology-enabled
organizations produce and record a voluminous amount
of data related to the business processes they execute
in event logs. Hence, it is obvious that the size of the

Sahu & Nayak International Journal on Emerging Technologies 11(3): 383-394(2020) 390

event logs increases exponentially as the number of
events increases linearly. Given the complex nature of
the process discovery algorithms and the exponentially-
increasing event logs, it becomes important to have
efficient implementations of process discovery
algorithms so that process discovery becomes faster. In
this regard, we have briefly described the frameworks
that are proposed in recent years.
 Evermann presented a framework based on the map-
reduce approach to enhance the execution efficiency of
process discovery algorithms assuming the distributed
nature of event log data produced by modern
information systems [19]. The map-reduce approachwas
applied to two of the well-known process discovery
algorithms namely the α algorithm [61] and the
FlexibleHeuristic Miner [76] which is an extended
version of the originally proposed “HeuristicMiner” [77].
The proposed map-reduce framework was highly
scalable but lacked in-memory computations.To test the
effectiveness of these proposed framework event logs
of a very large size are required. Due to unavailability of
such large size real-world event logs, all these three
methods were tested on artificial event logs of very large
size. The authors used an artificial event log of size 80
GB to show the effectiveness of their proposed Map-
Reduce framework on the α and the FHM algorithm
respectively [19].
Sahu et al. [53] proposed a task-parallelism based
approach to increase the execution efficiency of the
αalgorithm [62].The authors applied the MPI framework
over an artificial event log of the size of 1.02 GB to
display the increased execution efficiency of the α

algorithm. In this work, independent and computation-
intensive steps available in the α algorithm were
identified and executed in parallel with the help of
distributed memory parallelism available in the message
passing programming (MPI) model. The execution
efficiency of the proposed MPI-based framework was
compared against the serial execution of the α algorithm
and the enhanced execution performance expressed
through the speedup [34] factor. They have exploited
task parallelism in the α algorithm for process discovery
by using the MPI programming model. Even though the
proposed approach was able to achieve an average
speedup of 3.94x, the upper limit of the speedup factor
was limited by the number of independent steps
available in the α algorithm.
An OpenMP application programming interface (API)
based framework was proposed [54] to increase the
execution efficiency of the α algorithm. The proposed
framework not only exploited the task-parallelism but
also the data-parallelism available in the α algorithm.
With this modified approach the maximum speedup
achieved was speedup and the upper limit of the
speedup factor was limited by the number of unique
events or activities discovered in an event log. However,
the framework suffered to increase the speedup factor
further due to the limited-bandwidth bottleneck induced
by the in-memory computations available in the
OpenMP model. The proposed OpenMP framework for
the α algorithm was used over an artificially generated
event log of size 2 GB. The details of the above
mentioned three frameworks are listed in Table 3.

Table 3: Overview of different process discovery techniques in the absence of caseid.

S. No. Method Contributor(s) Year
Tested on
synthetic

logs

Tested on
real-world

logs

In-memory
computation

Applied on
algorithm

(s)

Event
log size

1. Map-Reduce
Evermann et al.,

[19]
2014 Yes No No

α [62], FHM
[76]

80 GB

2.
MPI

framework
Sahu et al., [53] 2018 Yes No Yes α [62]

1.02
GB

3.
OpenMP

framework
Sahu and Nayak

[54]
2019 Yes No Yes α [62] 2 GB

V. DISCUSSION

Based on the research questions Q1 and Q2 in Section
II, we were able to find out sixty-one different process
discovery techniques that relied on caseid and two other
techniques that can discover process models in the
absence of caseid respectively. Also, the search made
for the research question Q3 yielded three proposals.
Since our primary focus was Q2 and Q3, we have listed
out our findings of the reviews on these two research
questions below, which we believe, would be helpful for
other researchers who are interested to work in the field
of process mining. A probabilistic approach based on
iterative Expectation-Maximization to tackle the
challenge of discovering process models from unlabeled
event logs presented [21].
However, the accuracy of their method relied on the
following two factors: the total number of sources in the
event log, and the number of overlapping sources. With
a high number of sources, it is easier to discover
consistent behavior in the event log.

But, with anincreasing number of overlapping sources, it
becomes difficult to separate the events belonging to
different sources.
Two matrices namely the Precede/Succeed matrix and
Duration matrix have been constructed and used to
create a correlation miner to discover process models
from unlabeled event logs. A high value for an entry in
the Precede/Succeed matrix indicates that it is more
probable to have an edge from the first to the second
activity for any two given activities. Similarly, a low value
for an entry in the Duration matrix indicates that it is
more likely that there is an edge from the first to the
second activity for any two given activities. At last, all
possible business process models are found out that
meet the rule mentioned above, and then the best one
is selected based on the values from the
Precede/Succeed matrix and the Duration matrix. The
method relies on the Duration matrix in which an entry
indicates the average time difference between events
referring to the first activity and events referring to the

Sahu & Nayak International Journal on Emerging Technologies 11(3): 383-394(2020) 391

second activity for any two given activities. If the
average time difference between any two activities is
too high, then the correlation miner would not be able to
correlate two activities [50].
The Map-Reduce framework for the α and the FHM
algorithms proposed [19] is based on the distributed
architecture and highly scalable. The proposed
framework is more suitable and effective for processes
where event log data are captured in a distributed
fashion. However, for a centrally collected event log
data, the proposed framework is not an efficient solution
as it lacks in-memory computation.
The proposed MPI framework is a distributed
architecture but allows in-memory computations. Thus,
the framework is scalable as well as compatible with in-
memory computations. But, the upper limit of the
speedup factor achieved through this framework is
limited by the number of independent tasks available in
the α algorithm.
The OpenMP framework for the α algorithm produced a
better execution efficiency in terms of the speedup
factor as compared to the MPI framework [53, 54]. The
OpenMP framework not only exploited the task-
parallelism but also the data-parallelism available in the
α algorithm. Specifically, this OpenMP based method
targeted the number of unique activities and the causal
relations available among those activities in an event log
to exploit parallelism. Even though the framework was
able to achieve a better speedup, the architecture itself
is not highly scalable as the performance of this
architecture degrades with increased memory traffic.

VI. CONCLUSION

In the last two decades, the field of process mining has
attracted many researchers and a vast number of
proposals have been published targeting many critical
aspects of this topic. While the primary aim of the
researchers was to develop process discovery methods,
the secondary aim was to deal with critical issues such
as detecting loops, splits-and-joins, and reducing noise.
Similarly, the applications of process discovery
algorithms have been widened as they are not confined
to only the business process domain. Rather, they are
being adopted in the fields like big-data, software
engineering, and IoT.

VII. FUTURE SCOPE

The majority of the proposals in the field of process
discovery rely on the caseid attribute of an event log to
discover process models. Thus, the challenge of
discovering process models in the absence of event
logs is least explored and still open for future proposals.
By discovering and gathering repeated event patterns
from an unlabeled event log and establishing some kind
of statistical correlations among those patterns may be
considered to discover a process model.
Even though a few proposals are available which talk
about increasing scalability and execution efficiency of
the process discovery algorithms, the number of
algorithms tested with these proposals is limited to the α
and the FHM algorithm. Also, these proposals have their
demerits. So, the future research directions in this
regard would be: (i) to try to overcome the limitations of
the existing proposals, (ii) to test the efficacy of the

existing proposals on remaining process discovery
algorithms, and (iii) to develop new execution
frameworks.

ACKNOWLEDGMENTS

The authors would like to thank all the anonymous
reviewers for their timely and constructive reviews.

Conflict of Interest. The authors do not have any
conflict of interest with any other author.

REFERENCES

[1]. Abe, M., & Kudo, M. (2014). Business monitoring
framework for process discovery with real-life logs.
In International Conference on Business Process
Management, 416-423.
[2]. Agrawal, R., Gunopulos, D., & Leymann, F. (1998,
March). Mining process models from workflow logs.
In International Conference on Extending Database
Technology, 467-483.
[3]. De Medeiros, A. A., van Dongen, B. F., Van der
Aalst, W. M., & Weijters, A. J. M. M. (2004). Process
mining: Extending the α-algorithm to mine short loops.
[4]. Augusto, A., Conforti, R., Dumas, M., & La Rosa, M.
(2017). Split miner: Discovering accurate and simple
business process models from event logs. In 2017 IEEE
International Conference on Data Mining (ICDM), 1-10.
[5]. Augusto, A., Conforti, R., Dumas, M., La Rosa, M.,
& Bruno, G. (2018). Automated discovery of structured
process models from event logs: the discover-and-
structure approach. Data & Knowledge
Engineering, 117, 373-392.
[6]. Bernardi, M. L., Cimitile, M., Di Francescomarino,
C., & Maggi, F. M. (2016). Do activity lifecycles affect
the validity of a business rule in a business
process?. Information Systems, 62, 42-59.
[7]. Breuker, D., Matzner, M., Delfmann, P., & Becker, J.
(2016). Comprehensible Predictive Models for Business
Processes. Mis Quarterly, 40(4), 1009-1034.
[8]. Buijs, J. C., van Dongen, B. F., & van der Aalst, W.
M. (2013). Discovering and navigating a collection of
process models using multiple quality dimensions.
In International Conference on Business Process
Management, 3-14, Springer, Cham.
[9]. Buijs, J. C., van Dongen, B. F., & van der Aalst, W.
M. (2014). Quality dimensions in process discovery: The
importance of fitness, precision, generalization and
simplicity. International Journal of Cooperative
Information Systems, 23(01), 1440001.
[10]. Carmona, J., & Cortadella, J. (2013). Process
discovery algorithms using numerical abstract
domains. IEEE Transactions on Knowledge and Data
Engineering, 26(12), 3064-3076.
[11]. Carmona, J., Cortadella, J., & Kishinevsky, M.
(2009). New region-based algorithms for deriving
bounded Petri nets. IEEE Transactions on
Computers, 59(3), 371-384.
[12]. Conforti, R., Dumas, M., García-Bañuelos, L., & La
Rosa, M. (2016). BPMN Miner: Automated discovery of
BPMN process models with hierarchical
structure. Information Systems, 56, 284-303.
[13]. Cook, J. E., & Wolf, A. L. (1998). Discovering
models of software processes from event-based

Sahu & Nayak International Journal on Emerging Technologies 11(3): 383-394(2020) 392

data. ACM Transactions on Software Engineering and
Methodology (TOSEM), 7(3), 215-249.
[14]. Datta, A. (1998). Automating the discovery of as-is
business process models: Probabilistic and algorithmic
approaches. Information Systems Research, 9(3), 275-
301.
[15]. de Medeiros, A. K. A., Weijters, A. J., & van der
Aalst, W. M. (2007). Genetic process mining: an
experimental evaluation. Data Mining and Knowledge
Discovery, 14(2), 245-304.
[16]. De Smedt, J., De Weerdt, J., & Vanthienen, J.
(2015). Fusion miner: Process discovery for mixed-
paradigm models. Decision Support Systems, 77, 123-
136.
[17]. De Weerdt, J., De Backer, M., Vanthienen, J., &
Baesens, B. (2012). A multi-dimensional quality
assessment of state-of-the-art process discovery
algorithms using real-life event logs. Information
Systems, 37(7), 654-676.
[18]. Di Ciccio, C., & Mecella, M. (2013, April). A two-
step fast algorithm for the automated discovery of
declarative workflows. In 2013 IEEE Symposium on
Computational Intelligence and Data Mining
(CIDM), 135-142.
[19]. Evermann, J. (2014). Scalable process discovery
using map-reduce. IEEE Transactions on Services
Computing, 9(3), 469-481.
[20]. Ferilli, S. (2013). Woman: Logic-based workflow
learning and management. IEEE Transactions on
Systems, Man, and Cybernetics: Systems, 44(6), 744-
756.
[21]. Ferreira, D. R., & Gillblad, D. (2009). Discovering
process models from unlabelled event logs.
In International Conference on Business Process
Management, 143-158. Springer, Berlin, Heidelberg.
[22]. Ferreira, H. M., & Ferreira, D. R. (2006). An
integrated life cycle for workflow management based on
learning and planning. International Journal of
Cooperative Information Systems, 15(4), 485-505.
[23]. Folino, F., Greco, G., Guzzo, A., & Pontieri, L.
(2009). Discovering expressive process models from
noised log data. In Proceedings of the 2009
international database engineering & applications
symposium, 162-172.
[24]. Gaaloul, W., Baïna, K., & Godart, C. (2005).
Towards mining structural workflow patterns.
In International Conference on Database and Expert
Systems Applications, 24-33, Springer, Berlin,
Heidelberg.
[25]. Goedertier, S., Martens, D., Vanthienen, J., &
Baesens, B. (2009). Robust process discovery with
artificial negative events. Journal of Machine Learning
Research, 10, 1305-1340.
[26]. Greco, G., Guzzo, A., Lupia, F., & Pontieri, L.
(2015). Process discovery under precedence
constraints. ACM Transactions on Knowledge Discovery
from Data (TKDD), 9(4), 1-39.
[27]. Greco, G., Guzzo, A., & Pontieri, L. (2008). Mining
taxonomies of process models. Data & Knowledge
Engineering, 67(1), 74-102.
[28]. Greco, G., Guzzo, A., & Pontieri, L. (2012).
Process Discovery via Precedence Constraints.
In ECAI (pp. 366-371).

[29]. Greco, G., Guzzo, A., Pontieri, L., & Sacca, D.
(2006). Discovering expressive process models by
clustering log traces. IEEE Transactions on Knowledge
and Data Engineering, 18(8), 1010-1027.
[30]. Günther, C. W., & Van Der Aalst, W. M. (2007).
Fuzzy mining–adaptive process simplification based on
multi-perspective metrics. In International conference on
business process management, 328-343, Springer,
Berlin, Heidelberg.
[31]. Guo, Q., Wen, L., Wang, J., Yan, Z., & Philip, S. Y.
(2016). Mining invisible tasks in non-free-choice
constructs. In International Conference on Business
Process Management, 109-125, Springer, Cham.
[32]. Herbst, J., & Karagiannis, D. (2004). Workflow
mining with InWoLvE. Computers in Industry, 53(3),
245-264.
[33]. Huang, Z., & Kumar, A. (2012). A study of quality
and accuracy trade-offs in process mining. INFORMS
Journal on Computing, 24(2), 311-327.
[34]. Hennessy, J. L., & Patterson, D. A.
(2011). Computer architecture: a quantitative approach.
Elsevier.
[35]. Lamma, E., Mello, P., Montali, M., Riguzzi, F., &
Storari, S. (2007). Inducing declarative logic-based
models from labeled traces. In International Conference
on Business Process Management, 344-359, Springer,
Berlin, Heidelberg.
[36]. Leemans, M., & van der Aalst, W. M. (2017).
Modeling and discovering cancelation behavior. In OTM
Confederated International Conferences" On the Move
to Meaningful Internet Systems, 93-113, Springer,
Cham.
[37]. Leemans, S. J. J., Fahland, D., & Aalst, van der,
W. M. P. (2014). Discovering block-structured process
models from event logs containing infrequent behaviour.
In N. Lohmann, M. Song, & P. Wohed (Eds.), Business
Process Management Workshops: BPM 2013
International Workshops, Beijing, China, August 26,
2013, Revised Papers, 66-78. (Lecture Notes in
Business Information Processing; Vol. 171). Berlin:
Springer.
[38]. Li, C., Ge, J., Huang, L., Hu, H., Wu, B., Yang, H.,
& Luo, B. (2016). Process mining with token carried
data. Information Sciences, 328, 558-576.
[39]. Liesaputra, V., Yongchareon, S., & Chaisiri, S.
(2016). Efficient process model discovery using maximal
pattern mining. In International Conference on Business
Process Management, 441-456, Springer, Cham.
[40]. Maggi, F. M., Dumas, M., García-Bañuelos, L., &
Montali, M. (2013). Discovering data-aware declarative
process models from event logs. In Business Process
Management, 81-96.
[41]. Maggi, F. M., Mooij, A. J., & van der Aalst, W. M.
(2011). User-guided discovery of declarative process
models. In 2011 IEEE Symposium on Computational
Intelligence and Data Mining (CIDM), 192-199.
[42]. Maggi, F. M., Slaats, T., & Reijers, H. A. (2014).
The automated discovery of hybrid processes.
In International Conference on Business Process
Management, 392-399.
[43]. Mannhardt, F., de Leoni, M., Reijers, H. A., & van
der Aalst, W. M. (2017). Data-driven process discovery-
revealing conditional infrequent behavior from event
logs. In International Conference on Advanced

Sahu & Nayak International Journal on Emerging Technologies 11(3): 383-394(2020) 393

Information Systems Engineering, 545-560.
[44]. Mannila, H., & Meek, C. (2000). Global partial
orders from sequential data. In Proceedings of the sixth
ACM SIGKDD international conference on Knowledge
discovery and data mining, 161-168.
[45]. Măruşter, L., Weijters, A. T., Van Der Aalst, W. M.,
& Van Den Bosch, A. (2006). A rule-based approach for
process discovery: Dealing with noise and imbalance in
process logs. Data mining and knowledge
discovery, 13(1), 67-87.
[46]. Mokhov, A., Carmona, J., & Beaumont, J. (2016).
Mining conditional partial order graphs from event logs.
In Transactions on Petri Nets and Other Models of
Concurrency 11, 114-136.
[47]. Molka, T., Redlich, D., Drobek, M., Zeng, X. J., &
Gilani, W. (2015). Diversity guided evolutionary mining
of hierarchical process models. In Proceedings of the
2015 Annual Conference on Genetic and Evolutionary
Computation, 1247-1254.
[48]. Nguyen, H., Dumas, M., ter Hofstede, A. H., La
Rosa, M., & Maggi, F. M. (2017, June). Mining business
process stages from event logs. In International
Conference on Advanced Information Systems
Engineering, 577-594.
[49]. Pesic, M., Schonenberg, H., & Van der Aalst, W.
M. (2007). Declare: Full support for loosely-structured
processes. In 11th IEEE International Enterprise
Distributed Object Computing Conference (EDOC
2007), 287-287.
[50]. Pourmirza, S., Dijkman, R., & Grefen, P. (2017).
Correlation miner: mining business process models and
event correlations without case identifiers. International
Journal of Cooperative Information Systems, 26(02),
1742002.
[51]. Redlich, D., Molka, T., Gilani, W., Blair, G. S., &
Rashid, A. (2014). Scalable Dynamic Business Process
Discovery with the Constructs Competition Miner.
In SIMPDA, 91-107.
[52]. Rubin, V., Van Dongen, B. F., Kindler, E., &
Günther, C. W. (2006). Process mining: A two-step
approach using transition systems and regions. In BPM
Center Report BPM-06-30, BPM Center.
[53]. Sahu, M., Chakraborty, R., & Nayak, G. (2018). A
task-level parallelism approach for process
discovery. International Journal of Engineering &
Technology, 7(4), 2446-52.
[54]. Sahu, M., & Nayak, G. K. (2019). An efficient
parallel framework for process discovery using
OpenMP. International Journal of Advanced Computer
Research, 9(41), 112-123.
[55]. Santhoshkumar, S., Mohamed, A. T., & Ramaraj,
E. (2019). Process Analytics Model for Health Care
using IoT and Big Data Techniques. International
Journal on Emerging Technologies, 10(4), 197–200.
[56]. Schimm, G. (2002). Process miner—a tool for
mining process schemes from event-based data.
In European Workshop on Logics in Artificial
Intelligence, 525-528.
[57]. Schimm, G. (2004). Mining exact models of
concurrent workflows. Computers in Industry, 53(3),
265-281.
[58]. Schönig, S., Rogge-Solti, A., Cabanillas, C.,
Jablonski, S., & Mendling, J. (2016). Efficient and
customisable declarative process mining with SQL.

In International Conference on Advanced Information
Systems Engineering, 290-305.
[59]. Song, W., Jacobsen, H. A., Ye, C., & Ma, X.
(2015). Process discovery from dependence-complete
event logs. IEEE Transactions on Services
Computing, 9(5), 714-727.
[60]. Tapia-Flores, T., Rodríguez-Pérez, E., & López-
Mellado, E. (2016). Discovering Process Models from
Incomplete Event Logs using Conjoint Occurrence
Classes. In ATAED@ petri nets/ACSD, 31-46.
[61]. Van Der Aalst, W. (2016). Data science in action.
In Process mining, 3-23.
[62]. Van der Aalst, W., Weijters, T., & Maruster, L.
(2004). Workflow mining: Discovering process models
from event logs. IEEE Transactions on Knowledge and
Data Engineering, 16(9), 1128-1142.
[63]. Van der Aalst, W. M., Rubin, V., Verbeek, H. M.
W., van Dongen, B. F., Kindler, E., & Günther, C. W.
(2010). Process mining: a two-step approach to balance
between underfitting and overfitting. Software &
Systems Modeling, 9(1), 87.
[64]. Van der Aalst, W. M., & Weijters, A. J. (2004).
Process mining: a research agenda.
[65]. Werf, van der, J. M. E. M., Dongen, van, B. F.,
Hurkens, C. A. J., & Serebrenik, A. (2009). Process
discovery using integer linear
programming. FundamentaInformaticae, 94(3-4), 387-
412.
[66]. Van Dongen, B. BPI challenge 2012 dataset
(2012).
[67]. van Dongen, B. F., & Van der Aalst, W. M. (2005).
Multi-phase process mining: Aggregating instance
graphs into EPCs and Petri nets. In PNCWB 2005
workshop, 35-58.
[68]. van Eck, M. L., Buijs, J. C., & van Dongen, B. F.
(2014). Genetic process mining: Alignment-based
process model mutation. International Conference on
Business Process Management, 291-303.
[69]. van Eck, M. L., Sidorova, N., & van der Aalst, W.
M. (2016). Discovering and exploring state-based
models for multi-perspective processes. In International
Conference on Business Process Management, 142-
157.
[70]. van Zelst, S. J., van Dongen, B. F., van der Aalst,
W. M., & Verbeek, H. M. W. (2018). Discovering
workflow nets using integer linear
programming. Computing, 100(5), 529-556.
[71]. vandenBroucke, S. K., & De Weerdt, J. (2017).
Fodina: A robust and flexible heuristic process discovery
technique. decision support systems, 100, 109-118.
[72]. vandenBroucke, S. K., Vanthienen, J., & Baesens,
B. (2014). Declarative process discovery with
evolutionary computing. In 2014 IEEE Congress on
Evolutionary Computation (CEC) (pp. 2412-2419).
IEEE.
[73]. Vasilecas, O., Savickas, T., & Lebedys, E. (2014).
Directed acyclic graph extraction from event logs.
In International Conference on Information and Software
Technologies, 172-181.
[74]. Vázquez-Barreiros, B., Mucientes, M., & Lama, M.
(2015). ProDiGen: Mining complete, precise and
minimal structure process models with a genetic
algorithm. Information Sciences, 294, 315-333.
[75]. Verbeek, H. M. W., van der Aalst, W. M., & Munoz-

Sahu & Nayak International Journal on Emerging Technologies 11(3): 383-394(2020) 394

Gama, J. (2017). Divide and conquer: A tool framework
for supporting decomposed discovery in process
mining. The Computer Journal, 60(11), 1649-1674.
[76]. Weijters, A. J. M. M., & Ribeiro, J. T. S. (2011).
Flexible heuristics miner (FHM). In 2011 IEEE
symposium on computational intelligence and data
mining (CIDM), 310-317.
[77]. Weijters, A. J. M. M., van Der Aalst, W. M., & De
Medeiros, A. A. (2006). Process mining with the
heuristics miner-algorithm. Technische Universiteit
Eindhoven, Tech. Rep. WP, 166, 1-34.
[78]. Wen, L., Van Der Aalst, W. M., Wang, J., & Sun, J.
(2007). Mining process models with non-free-choice
constructs. Data Mining and Knowledge
Discovery, 15(2), 145-180.
[79]. Wen, L., Wang, J., van der Aalst, W. M., Huang,

B., & Sun, J. (2009). A novel approach for process
mining based on event types. Journal of Intelligent
Information Systems, 32(2), 163-190.
[80]. Westergaard, M., & Maggi, F. M. (2011). Declare:
A Tool Suite for Declarative Workflow Modeling and
Enactment. BPM (Demos), 1-5.
[81]. Yahya, B. N., Bae, H., Sul, S. O., & Wu, J. Z.
(2013). Process discovery by synthesizing activity
proximity and user’s domain knowledge. In Asia-Pacific
Conference on Business Process Management , 92-
105.
[82]. Yahya, B. N., Song, M., Bae, H., Sul, S. O., & Wu,
J. Z. (2016). Domain-driven actionable process model
discovery. Computers & Industrial Engineering, 99,
382–400.

How to cite this article: Sahu, M. and Nayak, G. K. (2020). Increasing Efficiency of Process Discovery Algorithms
and Process model Discovery from unlabeled event logs: A Review. International Journal on Emerging
Technologies, 11(3): 383–394.

